مراحل روش تخمین مدل بوسیله داده های تلفیقی
سؤالی که اغلب در مطالعات کاربردی مطرح میشود این است که آیا شواهدی دال بر قابلیت ادغام شدن داده ها وجود دارد یا اینکه مدل برای تمام واحدهای مقطعی متفاوت است. به عبارت دیگر آیا در مدل مورد نظر برای مقاطع مختلف هم شیب ها و هم عرض از مبدأها متفاوت است. این سؤال را میتوان با فرضیه زیر مطرح نمود:
فرضیه مذکور را میتوان به عنوان یک مجموعه قیود خطی روی ضرایب در نظر گرفت و برای آزمون که به chow test معروف است ار آماره F به صورت ذیل استفاده نمود:
که در آن :
: مجذور پسماندهای حاصل از برازش رگرسیون مقید است.
:مجذور پسماندهای حاصل از برازش رگرسیون نا مقید هر یک از معادلات
با استفاده از روش حداقل مربعات معمولی میباشد.در صورتیکه فرض پذیرفته نشود، دلیل بر یکسان فرض نمودن شیبها و عرض از مبدأ واحدهای مختلف مقطعی وجود ندارد.
آزمون دیگری مطرح است که با فرض متفاوت بودن عرض از مبدأ مقاطع فرضیه زیر را مطرح نمود.
که این فرضیه به صورت یک مجموعه قیود خطی فقط روی ضرایب متغیرهای توضیحی در نظر گرفته میشود که برای آزمون فرضیه مذکور از آماره F به صورت ذیل استفاده میشود.
که در آن :
: مجذور پسماندهای حاصل از برازش رگرسیون مقید است.
: مجذور پسماندهای حاصل از برازش رگرسیون نا مقید هر یک از معادلات
با استفاده از روش حداقل مربعات معمولی میباشد. در صورتیکه فرض پذیرفته شود،سؤال اساسی دیگری مطرح خواهد شد و آن این است که آیا تفاوت در مقاطع مختلف میتوان بوسیله عرض از مبدأ خاص در واحد پاسخگو باشد. به عبارت دیگر آیا تفاوت در عرض از مبدأ واحدهای مقطعی به طور ثابت عمل میکند یا اینکه عملکردهای تصادفی میتوانند این اختلاف بین واحدها را بطور واضح تری بیان نماید که به ترتیب این دو روش در ادبیات داده های تلفیقی به روش های ثابت و اثرات تصادفی مشهور هستند که ذیلاً روشهای فوق الذکر به اختصار مورد بحث قرار میگیرد(همان، ۵۰۶).
۳-۷-۳-۲- روش برآورد
روشهای سنتی اقتصادسنجی در برآورد ضرایب یک الگو، مبتنی بر پایا (مانا) بودن سریهای زمانی میباشند. متغیر سریزمانی وقتی مانا است که میانگین، واریانس، کواریانس و در نتیجه ضریب همبستگی آن در طول زمان ثابت باشد و مهم نباشد که در چه مقطعی از زمان، این شاخصها را محاسبه کنیم. امّا از طرفی، «بررسیهایی که از سالهای ۱۹۹۰ به بعد انجام شده، نشان داده است که بسیاری از متغیرهای سریزمانی در اقتصاد مانا نیستند» (هژبر کیانی،۱۳۷۶،ص ۵۲). به عبارتی دیگر، میانگین و واریانس این سریها در طول زمان متغیر بوده و کواریانس آنها در ازای وقفههای مشخص، ثابت نیست که از این خصوصیات به عنوان نامانا[۱]بودن سریهای زمانی یاد میشود. اگر سریهای زمانی مورد استفاده در برآورد ضرایب الگو نامانا باشند، برآورد الگو با چنین متغیرهایی ممکن است به رگرسیون کاذب[۲] منجر شود؛ بدین معنی که ممکن است ضریب تعیین به دست آمده از الگوی برآوردی بسیار بالا بوده، ولی هیچ رابطۀ معنیداری بین متغیرهای الگو وجود نداشته باشد. عدم توجه به چنین نکتهای، موجب گمراهی محقق و استنباطهای غلط در مورد ارتباط بین متغیرها خواهد شد. از این رو قبل از استفاده از این متغیرها لازم است نسبت به مانایی یا عدم مانایی آنها اطمینان حاصل کرد (نوفرستی ،۱۳۷۸، ۸۶).
[۱] Non-Stationary
[۲] ) Spurious Regression.
متن فوق بخش هایی از این پایان نامه بود
برای دیدن جزئیات بیشتر ، خرید و دانلود آنی فایل متن کامل با فرمت ورد می توانید به لینک زیر مراجعه نمایید: